Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Sci Technol ; 57(10): 4231-4240, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2256943

ABSTRACT

Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , SARS-CoV-2 , Levivirus , Respiratory Aerosols and Droplets
3.
Indoor Air ; 32(4): e13029, 2022 04.
Article in English | MEDLINE | ID: covidwho-1794658

ABSTRACT

Individuals with COVID-19 who do not require hospitalization are instructed to self-isolate in their residences. Due to high secondary infection rates in household members, there is a need to understand airborne transmission of SARS-CoV-2 within residences. We report the first naturalistic intervention study suggesting a reduction of such transmission risk using portable air cleaners (PACs) with HEPA filters. Seventeen individuals with newly diagnosed COVID-19 infection completed this single-blind, crossover, randomized study. Total and size-fractionated aerosol samples were collected simultaneously in the self-isolation room with the PAC (primary) and another room (secondary) for two consecutive 24-h periods, one period with HEPA filtration and the other with the filter removed (sham). Seven out of sixteen (44%) air samples in primary rooms were positive for SARS-CoV-2 RNA during the sham period. With the PAC operated at its lowest setting (clean air delivery rate [CADR] = 263 cfm) to minimize noise, positive aerosol samples decreased to four out of sixteen residences (25%; p = 0.229). A slight decrease in positive aerosol samples was also observed in the secondary room. As the world confronts both new variants and limited vaccination rates, our study supports this practical intervention to reduce the presence of viral aerosols in a real-world setting.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/analysis , Humans , RNA, Viral , SARS-CoV-2 , Single-Blind Method
4.
Atmosphere ; 13(1):45, 2022.
Article in English | ProQuest Central | ID: covidwho-1635429

ABSTRACT

We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.

6.
Transportation Research Board; 2021.
Non-conventional in English | Transportation Research Board | ID: grc-747505

ABSTRACT

The COVID-19 pandemic has been a worldwide issue for over a year now, and transit agencies are still struggling to find cost efficient solutions, which will provide improved rider safety and restore rider confidence. Airborne transmission of the virus has been identified as one of the primary modes through which COVID-19 is spread. MERV 13 filters are able to filter 85% of particles from 1 µm to 3 µm in size, which is ideal for capturing the respiratory droplets. MERV 8+Ag filters contain a silver impregnated layer within and on top of the filter material. This silver layer has antiviral properties which can deactivate viruses trapped within the layer, as well as help prevent the growth of other pathogens that may have been trapped on the filter and will sit on the used filter until it is replaced. The primary goal of this study is to determine if the performance on these filters change over time, specifically in the transit environment, and to compare the results to manufacturer ratings. The intended outcome of the project is to provide a series of guidance and recommendations to transit agencies to help them decide whether it is worth the additional financial cost as well as any potential increased maintenance associated with upgrading their filters.

7.
J Occup Environ Hyg ; 18(9): 461-475, 2021 09.
Article in English | MEDLINE | ID: covidwho-1291249

ABSTRACT

Environmental air sampling of the SARS-CoV-2 virus in occupational and community settings is pertinent to reduce and monitor the spread of the COVID pandemic. However, there is a general lack of standardized procedures for airborne virus sampling and limited knowledge of how sampling and storage stress impact the recovery of captured airborne viruses. Since filtration is one of the commonly used methods to capture airborne viruses, this study analyzed the effect of sampling and storage stress on SARS-CoV-2 surrogate virus (human coronavirus OC43, or HCoV-OC43) captured by filters. HCoV-OC43, a simulant of the SARS-CoV-2, was aerosolized and captured by PTFE-laminated filters. The impact of sampling stress was evaluated by comparing the RNA yields recovered when sampled at 3 L/min and 10 L/min and for 10 min and 60 min; in one set of experiments, additional stress was added by passing clean air through filters with the virus for 1, 5, and 15 hr. The impact of storage stress was designed to examine RNA recovery from filters at room temperature (25 °C) and refrigerated conditions (4 °C) for up to 1 week of storage. To our knowledge, this is the first report on using HCoV-OC43 aerosol in air sampling experiments, and the mode diameter of the virus aerosolized from the growth medium was 40-60 nm as determined by SMPS + CPC system (TSI Inc.) and MiniWRAS (Grimm Inc.) measurements. No significant difference was found in virus recovery between the two sampling flow rates and different sampling times (p > 0.05). However, storage at room temperature (25 °C) yielded ∼2x less RNA than immediate processing and storage at refrigerated conditions (4 °C). Therefore, it is recommended to store filter samples with viruses at 4 °C up to 1 week if the immediate analysis is not feasible. Although the laminated PTFE filter used in this work purposefully does not include a non-PTFE backing, the general recommendations for handling and storing filter samples with viral particles are likely to apply to other filter types.


Subject(s)
Air Filters/virology , COVID-19/epidemiology , Coronavirus OC43, Human/isolation & purification , Specimen Handling/methods , Specimen Handling/standards , Environmental Monitoring , Humans , Pandemics , SARS-CoV-2 , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL